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Multiple sclerosis (MS) and other T cell-mediated autoimmune diseases develop in individuals carrying a
complex susceptibility trait, probably following exposure to various environmental triggers. Owing to the
presumed weak influence of single genes on disease predisposition and the recognized genetic hetero-
geneity of autoimmune disorders in humans, candidate gene searches in MS have been difficult. In an
attempt to identify molecular markers indicative of disease status rather than susceptibility genes for MS, we
show that gene expression profiling of peripheral blood mononuclear cells by cDNA microarrays can
distinguish MS patients from healthy controls. Our findings support the concept that the activation of
autoreactive T cells is of primary importance for this complex organ-specific disorder and prompt further
investigations on gene expression in peripheral blood cells aimed at characterizing disease phenotypes.

INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinat-
ing disorder of the central nervous system (CNS) with various
degrees of axonal damage. MS affects mainly young adults
with predominance for females and a prevalence in the USA
and northern Europe of �100 per 100 000 people (1). Since it
often leads to substantial disability, MS has major socio-
economic impact.

Intensive investigations over the last two to three decades
have indicated that MS is pathogenetically a T cell-mediated
autoimmune disease (2). Its etiology remains elusive, but the
interplay between environment and genetic factors is ultimately
thought to be critical to the development of the disease.
Epidemiological observations at the population level as well as
familial aggregation studies (3–6) have prompted, in different
MS populations, linkage studies and candidate gene searches in
the attempt to dissect genetic components of the susceptibility
to MS. The results were similar to other autoimmune diseases,

suggesting that MS is genetically complex and there may be no
single genes of major attributable risk. Instead MS may result
from the contribution of several genes exhibiting low or
moderate effect (7,8). While none of the candidate genes
suggested to date has been shown to be essential or sufficient
for disease development, the most robust association has
clearly been established with alleles of the major histocom-
patibility complex (MHC; HLA in humans, on chromosome
6p21) and in particular with the haplotypes HLA-DQB1*0602,
-DQA*0102, -DRB1*1501, -DRB5*0101 (9,10). In summary,
etiologic and genetic heterogeneity, epistatic gene interactions
and epigenetic modifications are only some of the possible
confounding factors to consider in interpreting the results of
studies on genetic susceptibility to MS (11).

Evidence of phenotypic heterogeneity in MS was recently
reported by Lucchinetti et al. (12) who described, in a large
series of actively demyelinating lesions from MS patients,
different pathology patterns suggestive of distinct pathogenic
mechanisms (12).
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The method of global gene expression analysis using cDNA
microarrays has proven to be a sensitive method to develop and
refine the molecular taxonomy of cancer and other disorders,
as well as a tool to investigate molecular heterogeneity (13).
Here, using this technology, complemented with a novel,
powerful, analytical method, we compared the gene expression
profiles of peripheral blood mononuclear cells (PBMC) from a
series of MS patients with those from healthy donors. The
specific aim of the study was to identify a panel of molecular
markers indicative of disease status and not necessarily the
identification of a gene(s) causative for MS. Nonetheless,
identifying genes capable of molecular classification of MS
from healthy controls using PBMC would be a significant
advance, also providing insight into the pathogenetic mecha-
nisms of MS. Results from previous microarray-based studies
sustain the rationale for employing microarrays to test PBMC
in autoimmune disorders (14–16). In accordance with the
reports by Ramanathan et al. (14) and Maas et al. (15), we found
that the differences existing between MS patients and control
individuals comprise immune related as well as cell cycle
related genes, supporting the idea that, besides the lymphocyte
activation and cell–cell interaction, other cellular events play
relevant roles during the course of autoimmune disease.

RESULTS

The method of analysis we employed (see Methods) presents
two major advantages: (a) extract data from strong feature sets
(17) to separate samples having the smallest variance within the
group and being least susceptible to both biological and
technical noise; (b) test the combined information in sets of
genes (pairs or triplets), so that if multiple causes are acting in
the sample set, such as gene interaction, the discriminative
power can contribute to the overall separation. The disadvan-
tage is the very intense computation requirements. We
identified more than a thousand pairs of genes that could
distinguish MS samples from controls in our initial ‘training
set’ (termed set 1). The pairs of genes separating MS from
healthy controls were strongly dominated by cDNA clones for
the heat shock protein-70 followed by CKS2. For example,
HSPA1L together with H1F2 and CKS2 together with
PAFAH1B1 by themselves discriminated well between MS
and controls (Fig. 1A and B). The results demonstrated a
s-error of less than 5% (sn¼ 0.6) for the best candidate pairs.
Using these pairs, we predicted whether a sample in an
independent test cohort (termed set 2), could be molecularly
‘diagnosed’ with MS, and achieved reasonably good prediction
results (Fig. 1C and D). For both pairs, only four individuals
were misclassified corresponding to 80% correct predictions.
This was also the case for most of the highest ranked
pairs. They typically resulted in an 80% classification per-
formance, generally with the same four healthy individuals
misclassified as for HSPA1L and H1F2 (Fig. 1C). Even for
normalized profiles, the range of values is slightly different
between sets 1 and 2 (Fig. 1), either reflecting differences in
microarray batches (shift of ranges) or sample preparation
(freshversus frozen,enlargedor reducedvariation). Nevertheless,
the classifiers identified in set 1 showed very good predictive
capability for set 2.

These results indicate that a set of genes differentially
expressed in MS patients can be used to predict the disease state
in an independent test set. Hence, we proceeded to find
candidate discriminatory genes using all individuals from both
sample sets. Using minimal criteria requiring each pair to have
a 1.4-fold difference in average expression between the two
groups, we identified 303 pairs having s-error less than 14%
(sn¼ 0.6). From this group, 112 represented unique genes that
could discriminate MS patients from controls in both sets (for
a complete list see Supplementary Material). Of the 112 genes,
53 appeared in at least two pairs (Fig. 2). Of interest, when we
used strong feature sets based on gene triplets (rather than pairs)
we did not gain significant improvement in misclassification
error. For this study, we therefore limited our analysis to pairs. It
is worth mentioning that, by generating the final discriminatory
gene list from the combination of both sets, we intended to
minimize potential experimental artifacts, such as low number
of samples. Obviously, differences exist between the two sets,
and we are aware of the gender mismatch of the control group
of set 1. However, we feel that the validation by a properly
matched group (set 2) strengthens the findings. Furthermore,
even though the classification error obtained from combining
both sets of samples increased when compared with the <5%
error achieved in set 1 only, we believe the grouping of
both sets may approximate more closely the real biological
variation. Being outside the aim of the study, we did not attempt
any sub-grouping of the patient samples. We rather see the
heterogeneity existing in all the samples (affected and control)
and the sample processing itself (fresh and frozen) as ‘noise’,
from which we expect the real signal to emerge.

In a complex disease like MS, we recognize that both multiple
interactions of different components of the immune system
in vivo, and the complexity of the intracellular pathways must
be considered in the interpretation of microarray experiments
(18). While it is currently impossible to understand the
biological outcome of these interaction patterns, we will below
highlight some of the genes involved in specific pathways that
are of potential interest for MS. These informative genes are
divided into two groups, based on their up- or down-regulation
in MS versus healthy donors (Table 1).

Genes with comparatively high expression in MS

The PAFAH1B1 gene encodes for the non-catalytic alpha
subunit of the intracellular Ib isoform of platelet-activating
factor acetylhydrolase, which is highly specific for platelet-
activating factor (PAF). A mutation of this gene is responsible
for the human Miller–Dieker lissencephaly, suggesting its
importance in controlling PAF levels during brain develop-
ment (19). Moreover, PAF has a key role as a chemo-attractant,
mediating inflammation and allergy.

We found increased expression of the TNF receptor (CD27)
transcript in MS patients. CD27 is a disulfide-linked homo-
dimer that serves as a costimulatory molecule during T cell
activation. Its production is exclusive to cells of lymphoid
lineage (NK, T and B cells) and is crucial for the development
and maintenance of immune responses (20).

Unlike those from healthy donors, MS samples showed
increased expression of genes related to T cell function and
activation, like the transcript for the T cell receptor alpha locus
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and its zeta-chain associated protein kinase (ZAP70). T cell
receptors are essential for any specific T cell-mediated immune
response and have been implicated in MS susceptibility by
genetic studies (21). ZAP70 is an important link between T cell
receptor engagement and intracellular signaling steps during
T cell activation (22). Also, the zinc finger protein 148
(ZNF148), which is known to bind the CACCC box promoter
of both the human and mouse TCR genes to activate trans-
cription (23), and the transcription factor-7, a T cell-specific
down-stream enhancer element that controls CD3E gene
expression (24), were up-regulated in the MS samples.

Another gene of interest is the interleukin 7 receptor gene
(IL7R). IL7R mediates the effects of IL7 during lymphopoiesis,

and its function is required for B and T cells, and in particular
for gamma/delta T cell development. Of note, increased
expression of IL7R was observed in a microarray study in
PBMC from MS patients (14). Furthermore, an observation on
the regulation of this gene and its relationship to T cell
activation events has recently been reported (25).

Genes with comparatively low expression in MS

Statistically most significant in our study was the relative
underexpression in the MS samples of the transcript for
the heat shock protein 70 kDa (HSP70). This ubiquitous,
highly conserved protein, previously suggested as a potential

Figure 1. Pairs of genes separating MS patients from healthy controls. The expression levels of HSPA1L and H1F2 (A) and CKS2 and PAFAH1B1 (B) are shown
for the MS (blue) and healthy (yellow) samples in set 1. Based on these samples and a s-error as indicated by the dotted circles around each sample, linear
classifiers were designed (solid lines). These classifiers were then used to predict the samples in the test set 2 (C and D). Each gene pair misclassified four samples,
giving a correct prediction rate of 80%.
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autoantigen in MS (26), maps on chromosome 6p21.3, the
MHC/HLA-region. However, HSP70 may not only be of rele-
vance as a potential autoantigen, but may also be particularly
important for its involvement in the mRNA degradation of
the cytokine in the ubiquitin–proteasome pathway (27) and its
chaperone function (28).

Next to HSP70, messengers for histone proteins were detected
as differentially regulated. The histone family genes map within
a cluster of 35 histone genes to 6p21.3, again in the MHC/HLA
region. Lever et al. (29) demonstrated that histone H1 is subject
to rapid exchange in vivo and is modulated by phosphorylation
(29). Not surprisingly, we also found that the expression of
CKS2 (CDC28 protein kinase-2 gene) was lower in MS than in

healthy donors, and it proved to be a good discriminator of MS
versus controls in our study. This latter gene encodes for a
protein kinase that is activated during cell cycle, pushes cells
into mitosis, and may have histone H1 as a substrate for
phosphorylation (30). Moreover, histones are functionally
regulated upon acetylation, known to be a mechanism in gene
activation, chromatin structure and gene silencing.

Other genes of interest underexpressed in the MS samples
included TNF and the oncogene JUN. The tissue inhibitor of
metalloproteinase 1 (TIMP1) is also down-regulated in MS, as
is SERPINE1, which is known to contain several regulatory
sequences including heat-shock- and retinoic acid-responsive
elements (31).

Figure 2. Expression of the 53 discriminatory genes. Each row represents one of the 53 discriminatory genes found in our analysis. Each column represents a
sample ordered such that the normal samples are on the left- and the MS samples on the right-hand side. For each gene, red indicates a high level of expression
relative to the mean; green indicates a low level of expression relative to the mean. The scale below indicates the number of standard deviations from the mean.
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It is worth noting that nine of the over- (2) or under-expressed
(7) discriminatory genes map to chromosome 6p21, a region
that has reproducibly shown the strongest association with MS
and other autoimmune diseases (see Supplementary Material).

DISCUSSION

During recent years, research into the etiology, pathogenesis
and clinical presentation of MS has indicated that it probably
represents a heterogeneous group of disorders rather than a
single disease entity (12), and dissecting the multitude of

factors that contribute to the disease development has been
difficult and frustrating not only in MS, but also in other
autoimmune diseases (32). Within the immune system, many of
the cytokines or chemokines and their respective receptors have
pleiotropic and redundant functions, and act in complex
networks rather than as single factors (33). This complexity
results in subtle changes that are difficult if at all possible to
detect (34).

The simultaneous analysis of the expression of thousands of
genes allows the exploration of interactions within many
components of entire networks, becoming elective instrument
to recognize pathophysiological pathways (35,36). The results

Table 1. Genes with differential expression in MS and controls

Gene name Hs cluster Relative
expressiona

Gene description Cytogenetic
position

Proteins involved in signal transduction and cell–cell interaction
IKKE Hs.321045 þ IKK-related kinase epsilon; inducible IkappaB kinase 1q32.1
MAL Hs.80395 þ Mal, T-cell differentiation protein 2q21.1
ZAP70 Hs.234569 þ Zeta-chain (TCR) associated protein kinase (70 kDa) 2q11.2
DPP4 Hs.44926 þ Dipeptidylpeptidase IV (CD26, adenosine deaminase complexing protein 2) 2q24.3
ITGA6 Hs.227730 þ Integrin, alpha 6 2q31.1
NKTR Hs.241493 þ Natural killer-tumor recognition sequence 3p22.1
SCYE1 Hs.333513 þ Small inducible cytokine subfamily E, member 1 (endothelial monocyte-activating) 4q25
IL7R Hs.237868 þ Interleukin 7 receptor 5p13.3
HLA-DRA Hs.76807 � Major histocompatibility complex, class II, DR alpha 6p21.1
CD83 Hs.79197 � CD83 antigen (activated B lymphocytes, immunoglobulin superfamily) 6p23
PTP4A1 Hs.227777 � Protein tyrosine phosphatase type IVA, member 1 6q12
PDE7A Hs.150395 þ Phosphodiesterase 7A 8q12.3
ATM Hs.194382 þ Ataxia telangiectasia mutated (includes complementation groups A, C and D) 11q22.3
TNFRSF7 Hs.180841 þ Tumor necrosis factor receptor superfamily, member 7 12p13.31
DGKA Hs.172690 þ Diacylglycerol kinase, alpha (80 kDa) 12q13.2
TRA@ Hs.74647 þ T cell receptor alpha locus 14q11.2
NK4 Hs.943 þ Natural killer cell transcript 4 16p13.3
PAFAH1B1 Hs.77318 þ Platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit (45 kDa) 17p13.3
SCYA3 Hs.73817 � Small inducible cytokine A3 (homologous to mouse Mip-1a) 17q21.1
CCR7 Hs.1652 þ Chemokine (C-C motif) receptor 7 17q21.2
MADH7 Hs.100602 � MAD (mothers against decapentaplegic, Drosophila) homolog 7 18q21.1
TIMP1 Hs.5831 � Tissue inhibitor of metalloproteinase 1 Xp11.23

Structural proteins, enzymes of cell metabolism and proteins of the intracellular trafficking
SPTBN1 Hs.107164 þ Spectrin, beta, non-erythrocytic 1 2p16.1
GOLGA4 Hs.183773 þ Golgi autoantigen, golgin subfamily a, 4 3p22.2
PIK3R4 Hs.83050 � Phosphoinositide-3-kinase, regulatory subunit 4, p150 3q21.3
HSPA1A Hs.8997 � Heat shock 70 kDa protein 1A 6p21.1
SLC35A1 Hs.82921 þ Solute carrier family 35 (CMP-sialic acid transporter), member 1 6q15
DNAJA1 Hs.94 � DnaJ (Hsp40) homolog, subfamily A, member 1 9p21.1
SPTAN1 Hs.77196 þ Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) 9q34.11
SERPINH2 Hs.9930 � Serine (or cysteine) proteinase inhibitor, clade H (heat shock protein 47), member 2 11q14.1
SEC34 Hs.13392 � Tethering factor SEC34 13q14.13
PPP2R5C Hs.171734 þ Protein phosphatase 2, regulatory subunit B (B56), gamma isoform 14q32.31
IFI30 Hs.14623 � Interferon, gamma-inducible protein 30 19p13.11
TTC3 Hs.118174 þ Tetratricopeptide repeat domain 3 21q22.13

Transcription factors, DNA binding and chromatin related proteins
JUN Hs.78465 � v-jun avian sarcoma virus 17 oncogene homolog 1p31.3
BAZ2B Hs.8383 þ Bromodomain adjacent to zinc finger domain, 2B 2q24.2
XPC Hs.320 þ Xeroderma pigmentosum, complementation group C 3p25.1
ZNF148 Hs.112180 þ Zinc finger protein 148 (pHZ-52) 3q21.2
TCF7 Hs.169294 þ Transcription factor 7 (T-cell specific, HMG-box) 5q23.3
H1F2 Hs.7644 � H1 histone family, member 2 6p21.1
CKS2 Hs.83758 � CDC28 protein kinase 2 9q22.2
DNTT Hs.272537 � Terminal deoxynucleotide transferase 10q24.1
BRF1 Hs.85155 � Zinc finger protein 36, C3H type-like 1 14q24.1
BCL2 Hs.79241 þ B-cell CLL/lymphoma 2 18q21.33
ZNF43 Hs.74107 þ Zinc finger protein 43 (HTF6) 19p13.11

a
þ, Higher average expression in MS; �, higher average expression in controls.
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of our investigation clearly support these points of view. We
have found that, even without obtaining perfect separation,
subtle but distinguishable gene expression differences between
healthy and MS subjects can be identified in peripheral blood
cells. In our opinion the misclassification of a few samples of
healthy individuals is not surprising and it is conceivable that
the set of genes we have identified that best classify MS
samples will probably be complemented and change. In fact,
consistent with the model of a multifactorial disease, neither
single genes nor a fixed group of genes are expected to
function as perfect classifiers, and limits are posed by the study
design (case–control) with a relatively restricted number of
samples (37).

Nevertheless, our findings are in line with previous reports in
MS, underscore basic principles and document new concepts.
We propose that the process which culminates in an
inflammatory cascade in the white matter of the CNS, can be
evaluated in the periphery where pathogenetic events take
place. However, as also pointed out in a recent microarray
study (16), we acknowledge that there is a distinction between
the genes that predispose to the disease (susceptibility alleles)
and those whose expression is altered in an affected individual
as a downstream effect of other genes. Subsets of genes confer
‘identity’ and account for direct genotype–phenotype correla-
tion, whereas others may function as indicators of the disease
status, and by identifying the former we may dissect the
interaction of multiple genes each weakly contributing to
disease susceptibility. Thus gene expression profiling may
serve as an important adjunct in the search for candidate genes
in multifactorial disorders (38).

With respect to the identified genes, some of potential interest
for MS are presented in the Results section. Pathways may be
defined and it is remarkable how the potentially coordinated
regulation of genes can be outlined (see Results). For many of
the transcripts for which we report a differential expression for
the disease samples (e.g. IL-7R, ZAP70, TNFRSF7) (39), the
role in autoimmunity is intuitive. However, for other genes it is
less so and we gain confidence of their involvement on the solid
basis of similar findings in analogous studies (14,15). Among
the most informative candidates, we find worth particular
attention the reduced transcription of the heat shock protein-70,
together with the group of the histones and the kinase-2 of the
CDC28 complex (CKS2). Although the real link of these
candidates to autoimmunity remains speculative, we fully
endorse the interpretation provided by Maas and colleagues
(15) that these genes as a whole signal for an altered regulation,
relative to controls, of the cell cycle in favor of an anti-apoptotic
program. The direct correlation between autoimmunity and
regulation of apoptosis is a relatively new concept of increasing
interest (40), strongly supported by characteristics of the
autoimmune lympho-proliferative syndrome (ALPS) in human
(41,42), and mouse models of systemic lupus erythemathosus
(SLE) (43), and our data suggest that parallels also exist in this
T cell-mediated disease, i.e. MS.

When performing a case–control study the information
obtained depends on the samples employed. As mentioned
above, this may represent an important limit because the
samples may not be representative of the general population. It
is conceivable, therefore, that two distinct studies may identify
different genes. However, we believe that the revealed pathways

should be focused on. For instance, UBE2G, UBE2M and
POH1 encode for proteins functioning in the ubiquitin–
proteasome complex and were detected as underexpressed in
the autoimmune group of samples in the study by Maas et al.
(15). We consider the presence in our gene list of HISPA1A,
also a relatively reduced transcript, as further evidence of the
involvement of this pathway in autoimmunity, probably due to
its role both in the intracellular processing of cytokine mRNA
(27), and the cell cycle (44), or perhaps due to function in
protein degradation during antigen presentation by the antigen
presenting cells (45), present in lower percentage in PBMC.
Similarly, Ramanathan et al. (14), reporting the overexpression
of transcripts for LCK, a protein–tyrosine kinase, a key com-
ponent of the TCR signal transduction, agrees with our finding
on ZAP70 and transcription factors involved in TCR expression
regulation (e.g. ZNF148, TCF7), in sustaining the relevance of
this pathway for autoimmunity. Further examples may be
extracted, again by simple means of comparison, such as the
recognition of increased levels of matrix metalloproteinase-19
(MMP-19) in the previous study (14), paralleled by low levels
of the inhibitor of metalloproteinase-1 (TIMP1) in our
investigation.

In regard to the search for susceptibility loci, it is noteworthy
how in this study the chromosome region 6p21 stands out
among the others for harboring both the HLA complex, the
histone cluster and the heat shock protein-70.

In conclusion, we are providing new evidence that the
‘expression signature’ of MS as detected in PBMC shows an
overall weak signal, suggesting that a fine regulation of a large
number of factors has to be kept in place to maintain
immunological tolerance and a slight deregulation may account
for its unbalance and subsequent pathology. In light of our
results, further investigations addressing specific questions on
the mechanisms underlying the etiology and pathogenesis of
MS will be needed. Such research should encompass longi-
tudinal follow-up of larger patient cohorts, and the information
should be complemented by patient stratification based on MS
pathology, immunological markers, clinical and magnetic
resonance imaging phenotype as well as response to therapeutic
intervention. We anticipate that gene expression profiling,
besides being utilization for focused research into the role of
individual functional pathways, will evolve into an important
technique to bridge studies on diseases of complex immuno-
genetic background, such as MS, to protein expression
profiling.

MATERIALS AND METHODS

Patient samples

PBMC samples were either collected fresh or isolated from
frozen cells and divided into two sets as they were hybridized
onto different batches of slides (see below). Set 1 included
freshly collected (14 MS and seven normals) as well as frozen
samples (three MS and two normals). Set 2 was composed of
10 MS and 10 healthy donors whose PBMC were stored frozen
at the cell bank of the NIB/NIH. All patients enrolled in the
study were free of therapy for at least 2 months. Patient and
donor characteristics are shown in Table 2. Fresh PBMC were
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isolated from lymphocytopheresis by density gradient centri-
fugation (Biowitthaker, Walkersville, MD, USA), the cells were
lysed by TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) and
then frozen at �80�C. RNA isolation was performed according
to a standard protocol in use at NHGRI (13). RNA from frozen
PBMC was prepared as above.

Microarray slides

The experiments were conducted with fluorescent labeling of
mRNA samples according to the standard protocol of NHGRI,
followed by hybridization onto glass slides (13). Two sets of
samples were hybridized onto two sets of slides, with partial

overlap of the cDNA clones. Set 1 was hybridized onto slides
containing about 6500 clones [4000 obtained under a
Cooperative Research and Development Agreement with
ResGen (Huntsville, AL) and 2500 from the germinal center
library of the ‘lymphochip’] (46). For set 2 we used arrays
containing 7500 cDNA clones (6500 from ResGen, 1000 from
the lymphochip).

Data analysis

We filtered genes by requiring that a gene should have a
minimal intensity across all experiments. Each slide was then
normalized such that the relative (or normalized) intensity (RI)

Table 2. Sample characteristics

Sample code Age Gender Set Disease type HLA-DR-B1a Length of disease (years)

Controls
H1 N.A. M 1 N.A. 1501 —
H2 37 M 1 N.A. 0302/1501 —
H3b N.A. M 1 N.A. N.A. —
H4a-H4bb N.A. M 1 N.A. N.A. —
H5 34 M 1 N.A. 11/16 —
H6 36 M 1 N.A. 07/1501 —
H7 43 M 1 N.A. N.A. —
H8 29 M 1 N.A. 0103/1502 —
H9 36 M 1 N.A. 07/1501 —
H11 31 F 2 N.A. N.A. —
H12 29 F 2 N.A. 0101/1501 —
H14 48 F 2 N.A. 07/1501 —
H15 49 M 2 N.A. 0701/1501 —
H16 46 F 2 N.A. 0301/0801 —
H17 39 M 2 N.A. 0302/1501 —
H18 28 F 2 N.A. 0301/1501 —
H19 N.A. M 2 N.A. 07/15 —
H20 44 M 2 N.A. 0101 —
H21 33 M 2 N.A. 15/16 —

MS patients
M1 40 M 1 RR 1101/1501 3
M2 48 F 1 RR 07/08 0.3
M3 47 F 1 RR 0701/1401 17
M4 47 F 1 SP 0401/1301 29
M5 31 F 1 RR 01/01 2
M6 33 F 1 RR 1101/1302 5
M7a-M7b 47 F 1; 2 RR 0301/1601 1
M8a-M8b 44 M 1; 2 RR 11/1501 3
M9 51 M 1 RR 01/11 16
M10a-M10b 36 F 1 SP 04/15 13
M11 34 F 1 RR 04/15 0.5
M12 46 F 1 RR 04/15 0.3
M13 36 F 1 RR 0101/1302 5
M14 40 M 1 SP 1101/1401 25
M15a-M15b 44 F 1 SP 01/11 9
M16 41 F 1 RR 4/7 14
M17 51 M 2 RR 11/1501 1
M18 37 F 2 RR 13/1501 0.5
M19 41 M 2 SP 1101/1401 25
M20 49 M 2 RR 1104/1302 5
M21 42 M 2 RR 11/1501 2
M22 42 M 2 SP 14/16 5
M23 36 F 2 RR 0401/1501 15
M24 44 F 2 RR 0404/1501 4

aOnly the DRB1* allele is shown; if only two digits are listed, serological typing was performed.
bRNA pool from multiple controls.
N.A.¼ not available. ‘a’ and ‘b’ designate individuals who donated two samples (fresh and frozen).
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for each gene was defined as RI¼ intensity of that spot/mean
intensity of filtered genes (47). The logarithm of RI was used as
a measure of the expression levels.

To predict whether samples were from MS patients or healthy
donors, we used a recently developed algorithm that finds
strong feature sets and design classifiers based on those feature
sets (17). The analysis of gene expression data poses a
fundamental conceptual problem: there are very large numbers
of genes (features) and typically a small number of experiments
(samples), rendering it difficult to find the best features from
which to construct a classifier (48). Furthermore, once a set of
features is selected, a classifier is designed and its error
estimated. For small number of samples, an error estimator may
still be unbiased, but due to large variance it often yields very
optimistic estimates (over-fitting). As a consequence, a large
number of feature sets and classifiers may result in low error
estimates, while the true error remains high. Conversely, our
novel method of analysis mitigates the small-sample problem.
(a) It designs classifiers using only a small number of features,
and (b) once the features are identified, assesses the probability
distribution that results from spreading the mass of the sample
points. This makes the classification more difficult, while
maintaining sample geometry. By considering increasing
amounts of spread, the algorithm finds feature sets whose classi-
fication accuracy remains good relative to greater spreading of
the sample. The error then gives a measure of the strength of the
feature set as a function of the spread.

We then used linear classifiers because of their simplicity and
an available analytical representation for both the classifier
design and its error, which help exploit many possible fea-
ture sets, more than 10 billion in this study. We tested single,
two and three genes in a classifier, for four different amounts
of spread (sn). The misclassification error, defined in terms of
s error as described (17), was estimated for sn¼ 0.6. A s
error of 5% has been shown for sn¼ 0.6 to result in robust
classifiers with good predictive ability (17). After designing
the classifiers using set 1, we applied them to set 2 as an
independent set to assess their predictive ability. Lastly, the two
sets of samples were combined to generate the final list of
marker genes.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.
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